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On the uniqueness of the surface sources of evoked potentials
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The uniqueness of a surface density of sources localized inside a spatial regionR and producing a given
electric potential distribution in its boundaryB0 is revisited. The situation in whichR is filled with various
subregions, each one having a definite constant value for the electric conductivity is considered. It is argued
that the knowledge of the potential in allB0 fully determines the surface-located sources for a general class of
surfaces supporting them and also a wide type of those sources. The class of surfaces can be defined as a un
of an arbitrary but finite number of open or closed surfaces. The only restriction upon them is that no one of
the closed surfaces contains inside it another~nesting! of the closed or open ones. The types of sources are
surface charge densities and double layer~dipolar! densities for the open surfaces and more restrictively, only
surface charge densities for the closed ones. A two-dimensional analytically solvable example illustrating the
drastic appearance of uniqueness after arbitrarily small holes are opened in nested surfaces is discussed.
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I. INTRODUCTION

The uniqueness problem for the sources of the evok
potential in the brain is a relevant research question due to
role in the development of cerebral electric tomograph
@1–4#. For a long time, it has been known that the gener
inverse problem in the determination of volumetric sourc
from the measurement of the potential at a surface is n
solvable in general@5,6#. However, under additional assump
tions about the nature of the sources, solutions can be
tained@7–9#. The supplementary assumptions can be clas
fied into two groups: the physically grounded ones, whic
are fixed by the nature of the physical problem and the on
that are imposed by invoking their mathematical property
determining a solution, but having a weak physical found
tion. The resumed situation implies that the determination
physical conditions implying the uniqueness of the sourc
for the evoked potentials remains an important subject
study. Results in this direction could avoid the imposition o
artificial conditions altering the real information on the
sources to be measured.

The question to be considered in this work is the uniqu
ness of the sources for evoked potentials under the supp
tion that these sources are localized over surfaces. This is
was also treated in Ref.@1# by including some specially de-
fined volumetric sources. The concrete aim here is to pres
a derivation of the results enunciated in Ref.@1# for the case
of open surfaces and to generalize it for a wider set of su
faces including closed ones.

It should be specified that as in Ref.@1#, here we will
assume that the evoked potential is measured over a clo
surface. Clearly, this condition is not satisfied in the practic
situations where the field in area of the neck cannot be d
termined. However, accepting that the sources are known
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be localized near the top of the head, for example, the sp
cific conclusions of this paper could be expected to appl
approximately. For example, situations for which it could be
expected to occur are such ones in which the sources of th
EEG are identified to be localized in some open region of th
cortex surface. The conditions for the practical application
of the discussion will be deferred for future analysis, since
they need a different sort of mathematical treatment.

We consider that the results enunciated in Ref.@1# are
valid and useful ones. Even more, we think that a relevan
merit of that paper is to call attention to the possibility of the
uniqueness of classes of surface density of sources. Spec
cally, in our view, the conclusion stated there about the
uniqueness of the sources of evoked potentials as restrict
to sources distributed in open surfaces is effectively valid. In
the present work, the central aim is to extend the result for
wider set of surfaces including closed ones by also furnish
ing an alternative way to derive the uniqueness result. Th
uniqueness problem for the special class of volumetri
sources discussed in Ref.@1# is not considered here in any
way.

The physical system under consideration for the proof o
the uniqueness is formed by various volumetric regions, eac
of them having a constant value of the conductivity, sepa
rated by surface boundaries at which the continuity equation
for the electric current is obeyed. The particular subset of th
open surfaces, in a more general way, is also allowed t
support continuous double layer~dipolar! surface source dis-
tributions, which are frequently used for physical applica-
tions in evoked potentials research.

The precise definition of the generators under examina
tion is the following. The sources are assumed to be define
by continuous and smooth surface charge densities lyin
over an arbitrary but finite number of smooth open or close
surfaces. The opened surfaces, as mentioned above, can a
support double layer surface densities. The unique constrai
to be imposed on these surfaces is that there is no nesti
among them. That is, there is no closed surface at whic
interior another open or closed of

-
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the surfaces resides. This class of supports expands the
considered in Ref.@1#. It should be stressed that the boun
aries between the interior regions are not restricted by
‘‘non-nesting’’ condition. That is, the fact that the skull an
the few boundaries between cerebral tissues can be vis
ized as nearly closed surface does not pose any limitation
the conclusion. The ‘‘non-nesting’’ condition should be va
only for the surfaces in which the sources can be expecte
reside. For example, if by any means we are sure that
sources stay at the cortex surface, then the uniqueness r
apply whenever the portion of the cortex implied does n
contain any closed surface.

It should be recognized that the claimed result loo
somewhat suspicious after considering that nestedlike
faces can be drastically transformed in non-nested one
arbitrarily small holes opened in them. This implies that,
strangely as it appears, the inverse problems for the con
ered charge distributions should be turned off disconti
ously from having nonunique to unique solutions. Howev
in support of the possible occurrence of this effect is that
discussion is related to a continuous system in which
potential in the outside boundary is assumed to be exa
known over a continuous surface. Then, it comes to m
that the opening of the hole would lead to a small but no
vanishing space-dependent potential at the outside of
now ‘‘almost nesting’’ surface. Since we are assuming
capability of performing an exact measure of the potent
no matter the weakness of the field, it becomes more nat
to accept the possibility for the potential to determine t
sources uniquely. We interpret this state of affairs in the f
lowing sense: for the cases in which the holes are re
small, to determine the sources in a practical discretizatio
the considered problem will be very much difficult than f
the cases in which the holes are bigger. In the former case
sensitivity of the measuring device needed for determin
uniquely the sources should be much greater in depend
of the smallness of the holes. That is, in spite of the corre
ness of the claimed result, the difficulty to experimenta
check the uniqueness in practical experiences will depend
the concrete situations.

In order to show the realization of the above general
gument within a specific example we discuss the tw
dimensional~2D! electrostatic solution associated with a lin
of charges that is parallel to a slotted and also pla
grounded conductor. However small but nonvanishing
slot is, it is shown that the measuring of the potential with
a whole plane separated from the charges by the slotted
ductor, uniquely determines the planar sources. Taking
account that for a rigorously null size of the slot, the inve
problem has no solution, the discontinuous change in
uniqueness character of the problem induced by small dri
holes becomes illustrated.

The paper is organized as follows. An auxiliary prope
is derived in the form of a theorem in Sec. II. In Sec. III th
proof of uniqueness for the kind of sources defined abov
presented. Finally, a two-dimensional illustration corr
sponding to a slotted plane and a line of charges parallel t
is discussed in Sec. IV.
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II. GREEN THEOREM AND FIELD VANISHING
CONDITIONS

Let us consider the potentialf generated by a source
distribution concentrated in the ‘‘non-nested’’ set of open o
closed surfaces defined in Sec. I, which at the same time
contained within a compact and simply connected spat
regionR. The setR, as explained before, is formed by vari
ous connected subregionsRi , i 50,1, . . . ,n each of them
filled with a substance having a constant conductivitys i .
Also, let Bi j be the possibly but unnecessarily existin
boundary between the subregionsRi andRj , andB0 be the
boundary ofR. For the sake of a physical picture, we ca
interpretB0 as the surface of the skull,R as the interior of the
head and the subregionsRi as the ones containing the variou
tissues within the brain. It is defined that the exterior spa
of the head corresponds toR0. In addition, let Si , i
51, . . . ,m be the surfaces pertaining to the arbitrary bu
finite setS of non-nested open or closed surfaces in whic
the sources are assumed to be localized. The abo
mentioned definitions are illustrated in Fig. 1.

Then, the Poisson equation satisfied by the potentialf in
the interior points ofR ~but which are outside the boundarie
between the internal regionsRi) can be written as

¹W •@s~xW !¹W f~xW !#5g~xW !, ~1!

g~xW !52¹W •JW~xW !, ~2!

whereJW are the impressed currents~for example, generated
by the neuron firings within the brain! and the space
dependent conductivity is defined by

s~xW !5s i for xWPRi . ~3!

Note, that for the pointsxW in which the above Poisson equa
tion is defined, the conductivitys(xW ) is effectively a con-
stant and can be extracted from the divergence operator.

FIG. 1. An illustration of a simply connected regionR consti-
tuted in this case by only two simply connected subregionsR1 and
R2 having a boundaryB12. The boundary with free space is de-
noted byB0. The set of non-nesting surfacesS have four elements
Si , i 51, . . . ,4 two of them open and other two closed ones. A
piecewise straight curveC joining any interior pointP of R and a
point O in the free space is also shown.
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It should be noticed that the conductivities are differen
from zero only for the internal regions ofR. The vacuum
outside is assumed to have zero conductivity and the fie
satisfying the Laplace equation. In addition, outside the su
port of the sources whereg50 the Laplace equation is also
satisfied except at the separations between the regionsRi ,
where the usual boundary conditions~within the static ap-
proximation! associated with the continuity of the electric
current flowing through these boundaries, takes the form

s i

]f

]ni
U

xPBi j

52s j

]f

]nj
U

xPBi j

, ~4!

where]ni symbolizes the directional derivative along a line
normal toBi j but taken in the limit ofx→Bi j from the side
of the regionRi . The direction defining the derivative is
taken as the one going fromRi to Rj , which justifies the
minus sign in Eq.~4!.

A main property is employed in this work for obtaining
the claimed result. In the form of a theorem for a more pr
cise statement, it is expressed as follows.

Theorem 1. Let us consider a differentiable surfaceS*
that divides an open ballR* into two connected and open
subregionsR1* andR2* and assume that the fieldw satisfies
the Laplace equation within, say,R1* . Consider also a
smaller ballQ with its center lying onS* , and its spherical
boundary having a minimal nonvanishing distance to th
boundary ofR* . DefineQ1 as equal to the intersection ofQ
with R1* . Then, if the gradient ofw tends to vanish on ap-
proaching any point of the intersection ofS* with Q while
coming from the interior ofQ1 , it follows thatw is constant
over any open set contained withinR1* .

As a first stage in the derivation of this property, let u
consider the Green Theorem as applied to an interior regi
Q1

e of the open setQ1 defined in the Theorem 1, inside
which the fieldw satisfies the Laplace equation. Then, th
theorem expressesw evaluated at a particular interior pointxW
in terms of itself and its derivatives at the boundaryBQ

1
e as

w~xW !5E
BQe1

dsW8

4p
•F 1

uxW2xW8u
¹W x8w~xW8!

2¹W x8S 1

uxW2xW8u
D w~xW8!G , ~5!

where the integral is running over the boundary surfac
BQe1 that is spanned by the coordinatesxW8. This relation
expresses the potential as a sum of surface integrals of
continuous and bounded values ofw and its derivatives.
Now, it is possible to set the boundary ofQ1

e to approach the
corresponding boundary ofQ1 in the limit e→0 in such a
way that no point ofS* is touched in the limiting process. It
can be remarked that this consideration for the limiting pro
cess is necessary for the cases in whichS* coincides with a
boundary between different conductivity regions or a surfa
0419
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supporting the sources. Exactly at the surface the gradient or
the field itself could be undefined.

After performing the limit process and due to the assump-
tion of the vanishing of the gradient overS* the first integral
appearing in Eq.~5! will reduce its domain to the spherical
part BQ1sphe of the boundary ofQ1 . Moreover, since the
integral of the gradient over any curve insideQ1 that tends
to be parallel but nontouchingS* , should approach zero be-
cause of the vanishing condition for the gradient, the limiting
value of the potential for any point tending toS* from the
inside of Q1, becomes a certain constant valuew0 . This
property allows us to write for Eq.~5! in the limit e→0, the
expression

w~xW !5w01 lim
e2.0

E
BQ

1
e

dsW8

4p
•F 1

uxW2xW8u
¹W x8w~xW8!

2¹W x8S 1

uxW2xW8u
D @w~xW8!2w0#G

5w01E
BQ1sphe

dsW8

4p
•F 1

uxW2xW8u
¹W x8w~xW8!

2¹W x8S 1

uxW2xW8u
D @w~xW8!2w0!G , ~6!

where the following identity has been employed:

w052E
BQ

1
e

dsW8

4p
•¹W x8S 1

uxW2xW8u
D w0 , xWPQ1

e .

The last integral in Eq.~6! has a domain that contains
points having a finite distance from the center ofQ. There-
fore, it implies that the potentialw is an analytical function
of all the components of a pointxW lying insideQ1 with the
only condition for it to have a finite minimal distance from
the points inBQ1sphe. An important property of the expres-
sion ~6! for w is that it should be also valid for the points
arbitrarily near but not pertainingS* , independently of the
possible boundary character of this surface or not. It should
be noticed that although Eq.~6! is not valid for the descrip-
tion of the real problem at the points ofS* , it is yet a well-
defined analytical function of the coordinates at all the points
of S* having a finite distance fromBQ1sphe.

Further, let us consider an arbitrary pointPPS* being
inside the regionQ, but having a finite distance from the
spherical part of the boundary ofQ1 , that isBQ1sphe. The
condition for S* to be differentiable in a sufficiently small
neighborhoodNP,S* can be now expressed by specifying
the coordinates of this surface as follows:

x1~s1 ,s2,0![s1 ,

x2~s1 ,s2,0![s2 , ~7!
01-3
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x3~s1 ,s2,0![g~s1 ,s2!,

where, clearly the parameters defining the surface are the tw
specific coordinatesx1 and x2; and g(s1 ,s2) is a differen-
tiable function of both variables. The coordinates are mea
sured from an origin situated at the pointP. Now, and within
a sufficiently small but finite neighborhood ofP, it is pos-
sible to define a curvilinear coordinate system in the follow
ing way:

x1~s1 ,s2 ,s3![s11s3 n1~s1 ,s2!,

x2~s1 ,s2 ,s3![s21s3 n2~s1 ,s2!, ~8!

x3~s1 ,s2 ,s3![g~s1 ,s2!1s3 n3~s1 ,s2!,

wherenW [„n1(s1 ,s2),n2(s1 ,s2),n3(s1 ,s2)… is a normal unit
vector toS* at the surface pointxW (s1 ,s2,0) of S* ands3 is
the distance from the general coordinate pointxW (s1 ,s2 ,s3) to
a corresponding surface pointxW (s1 ,s2,0). Therefore, by con-
structionxW (s1 ,s2 ,s3) is assumed to be along a line normal to
S* at the pointxW (s1 ,s2,0).

Taking the derivatives of the coordinates~8! follows that

(
i 51

3
]xi~s!

]s3

]xi~s!

]s1
5(

i 51

3

ni~s1 ,s2!S ]xi

]s1
~s1 ,s2,0!

1s3

]

]s1
ni~s1 ,s2! D

50,

(
i 51

3
]xi~s!

]s3

]xi~s!

]s2
5(

i 51

3

ni~s1 ,s2!S ]xi

]s2
~s1 ,s2,0!

1s3

]

]s2
ni~s1 ,s2! D

50, ~9!

s5~s1 ,s2 ,s3!, x5~x1 ,x2 ,x3!.

These relations follow because the derivative of a uni
vector is always normal to it and also because the vecto
]xW (s1 ,s2)/]s1,2 are tangent to the surface and therefore or
thogonal tonW (s1 ,s2). In addition, the identity

(
k51

3
]xi~s!

]sk

]sk~x!

]xj
5d i j

expresses that the matrix]sk(x)/]xj is the inverse of
]xi(s)/]sk . Now, it could be noticed that from Eq.~8! it
follows that ]xi(s)/]sk is an analytic function ofs3. The
same property is not happening with respect to the othe
variabless1 ,s2, because the surfaceS* is only supposed to
04190
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be differentiable. Therefore, it follows that the components
of the inverse matrix]sk(x)/]xj and its derivatives, which
are needed below, also will be analytic functions ofs3. Also,
it will be useful to notice here that Eq.~6! implies that the
field w is also an analytic function ofs3 for fixed s1 ,s2.

Now, the Laplace equation forw in terms of thes coor-
dinates can be written as

]2

]s3]s3
w~s!1

1

h~s! (
i 51

3
]2s3

]xi]xi

]

]s3
w~s!

1
1

h~s! (
i 51

3

(
s51

2
]2ss

]xi]xi

]

]ss
w~s!1

1
1

h~s! (
i 51

3

(
s51

2

(
s851

2
]ss

]xi

]ss8
]xi

]2

]ss]ss8

w~s!50,

~10!

h~s!5(
i 51

3
]s3

]xi

]s3

]xi
. ~11!

The absence of the terms containing mixed derivative
over s3 ands1,2 is a consequence of Eq.~9!. From the ana-
lyticity with respect tos3 of the Jacobian]si /]x j and its
derivatives over thes variables it follows that all the coeffi-
cients in the Laplace equation~10! are also analytic functions
of the s3 variable. Furthermore, since the vector]s3 /]xi is
one of the rows of the Jacobian, its square modulush(s)
cannot vanish at the pointP, thus allowing the division by it
in some sufficiently small but finite neighborhood.

Next, the above-mentioned analyticity ofw with respect
to the variables3 permits to write the expansion

w~s!5 (
n50

`

f n~s1 ,s2!s3
n , ~12!

where the coefficientsf n are functions ofs1 ,s2. Thus, let us
substitute Eq.~12! in Eq. ~10! and take into account that all
the coefficient functions in Eq.~10! are analytically depend-
ing on s3, a property that allows to multiply their series
expansions. After that, the necessary vanishing of the coeffi
cients of the Taylor series to which Eq.~10! reduces, implies
the following kind of recurrence relations for the functions
f n :

f n12~s1 ,s2!5
1

~n11!~n12!

3 (
m50

n F ~m11!cn2m~s1 ,s2! f m11~s1 ,s2!

1 (
s51

2

cn2m
s ~s1 ,s2!

]

]ss
f m~s1 ,s2!
1-4
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1 (
s51

2

(
s851

2

cn2m
s,s8~s1 ,s2!

]

]ss]ss8

f m~s1 ,s2!G ,

n50,1, . . .`. ~13!

Relations~13! imply that the coefficientsf n are deter-
mined by their values for lesser values of the indexn. Let us
study below what are the conditions imposed on thef n by
the vanishing of the gradient at the points ofS* . First, the
gradient can be expressed as

]w

]xi
5(

j 51

3
]sj

]xi

]w

]sj
5(

j 51

3
]sj

]xi
(
n50

` S ] f n~s1 ,s2!

]sj

1~n11! f n11~s1 ,s2!d j 3D s3
n . ~14!

Since these derivatives all vanish at all the points ofS* ,
relation ~14! in the limit s3→0 leads to

] f 0~s1 ,s2!

]s1
50,

] f 0~s1 ,s2!

]s2
50, ~15!

f 1~s1 ,s2!50.

But, thanks to the recurrence character of Eq.~13! and the
conditions~15! for the first two coefficientsf n , it follows
that all these quantities vanish forn>1. At the same time
Eq. ~15! implies

f 0~s1 ,s2!5 f 05const.

Therefore, it follows that the fieldw determined by Eq.~6! is
constant within a finite neighborhood of the pointP. It
should be recalled that in accordance with the conditions
Theorem 1, Eq.~6! was only valid for the internal points of
Q1 ~which are not included inS* ). Therefore, the constancy
of w has been shown here only for certain open neighbo
hood included inQ1 having no common points withS* .
Physically, this circumstance is expressing the possibili
that the surfaceS* could be a part of a boundary between
regions of different conductivity or a support of the sources

To finish the proof of the theorem, it rests to show that i
gradient ofw vanish within a certain open neighborhoodN,
included in an arbitrary connected open setO pertaining to
the regionR1* defined in Theorem 1, in which the Laplace
equation is obeyed, then the electric field vanish in allO.
Consider first thatQ is an open set such thatO,Q and also
suppose that the smallest distance from a point inO to the
boundaryBQ of Q has the finite valued. Then, the Green
theorem~5! as applied to the regionQ expresses that the
04190
of
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minimal radius of convergence ofw and its gradient consid-
ered as analytical functions of any of the coordinates~mea-
sured from the considered point! is equal or greater thand.

Imagine now a curveC starting in an interior pointP of N
and ending at any pointP1 of O. Assume thatC is formed by
straight lines pieces~see Fig. 2! and that all its points are
included inO. It is then possible to definew as a function of
the length of arcs of C as measured from the pointP. It
should be also valid that in any open segment ofC, not
including the intersection points of the straight lines pieces
the potentialw and all the components of its gradient¹W w,
are analytic function ofs. Furthermore, let us considerC as
partitioned in a finite number of segments of lengths,d.
Suppose also, that the intersection points of the straight line
pieces are the borders of some of the segments. It can b
noticed that¹W w vanishes in any segment ofC starting within
N, because it vanishes inN exactly. Furthermore, let us con-
sider also a small open ballB,N centered inP and the set of
all the curves obtained by parallel translations of the jus
definedC in the vector joiningP with any of the points ofB.
The set of all the ending points of such curves will define a
similar toB open ball withP1 at its center. It is clear that for
a sufficiently smallB all such curves will be included inO,
since all the points ofC pertain toO that is open. Therefore,
it follows that in analogy to what happened for the curveC,
the components of¹W w vanish at all the segments of the
translated curves starting inN. This fact implies that¹W w
vanishes in a whole open ball around the ending point of th
first segment of the curveC. Since the series expansions of
the components of¹W w with respect to the arc length~mea-
sured from the intersection point being considered! has by
construction a radius of convergence greater than the leng
of any of the segments, the vanishing¹W w in a whole open
ball around one of the intersection points directly implies the
vanishing of these quantities within an open ball around the
next intersection point. The same argument can be repeated
done in an iterative way to conclude that¹W w vanishes at the
arbitrary ending pointP1 of the curveC. Henceforth, the
conclusion of Theorem 1 follows: The potentialw is a con-
stant at any interior point ofR1* .

FIG. 2. Picture of the regionRi and the open neighborhoodN in
which the fieldw vanishes exactly. A piecewise straight line curve
C joining a pointPPN and certain pointP1 in Ri is also shown.
1-5



a

o

u

e

a

-
f
n

t

ls

i

e
s

v

the

the

r-

e

l

d

e-
s
so

or
ble
x
is
nt
s-

ctly
f.
. It
er

be

ALEJANDRO CABO, CARLOS HANDY, AND DANIEL BESSIS PHYSICAL REVIEW E64 041901
III. UNIQUENESS OF THE NON-NESTING SURFACE
SOURCES

Let us argue now the uniqueness of the sources which
defined over a set of non-nested surfacesS producing spe-
cific values of the evoked potentialf at the boundaryB0 of
the regionR. For this purpose it will be assumed that two
different source distributions produce the same evoked p
tential overB0. The electrostatic fields in all space associate
with those sources should be different as functions defined
all space. They will be calledf1 and f2. As usual in the
treatment of uniqueness problems in the linear Laplace eq
tion, consider the new solution defined by the differencef
5f12f2. Clearly w corresponds to sources given by th
difference of the ones associated withf1 andf2. It is also
evident thatf has vanishing values atB0. Then, since the
sources are localized at the interior ofR andf satisfies the
Laplace equation with zero boundary condition atB0 and at
the infinity, it follows that the field vanishes in allR0, that is,
in the free space outside the head. Therefore, it follows th
the potential and the electric field vanish in allB0 when
approaching this boundary from the free space (R0). The
continuity of the potential, the boundary conditions~4! and
the irrotational character of the electric field allows to con
clude thatf and the electric field also vanish at any point o
B0 but now when approaching it from any interior subregio
Ri having a boundaryBi0 with the free space. Moreover, if
the boundary surface of any of these regions that are in co
tact with the boundary ofR is assumed to be smooth, then i
follows from Theorem 1 that the potentialf and the electric
field vanish in all the open subsets ofRi , points that are
connected through its boundaryBi0 with free space by
curves not touching the surfaces ofS. It is clear that this
result holds for all the open subsets of theseRi in which
Laplace equation is satisfied excluding those that are a
residing inside one of the closed surfacesSi in the setS.

It is useful for the following reasoning to remark that if
we have any boundaryBi j between two regionsRi andRj ,
and the potentialf and the electric field vanish in certain
open~in the sense of the surface! and smooth regions of it,
then Theorem 1 implies that the potential and the electr
field also vanish in all the open subsets ofRi andRj that are
outside any of the closed surfaces inS. Since the sources stay
at the surfaces inS the fieldf and its gradient at the internal
boundary of the closed surfacesSi , will not necessarily sat-
isfy the conditions of Theorem 1, even when the field and th
gradient can be shown to vanish at the outside.

Let us consider in what follows a pointP included in a
definite open vicinity of a subregionRi . Suppose also thatP
is outside any of the closed surfaces inS. Imagine a curveC
that joinsP with the free space and does not touch any of th
surfaces inS. It is clear that, if appropriately defined,C
should intersect a finite number of boundariesBi j including
always a certain oneBj 0 with free space. Let us also assum
that C is adjusted in a way that in each boundary it crosse
the intersection point is contained in a smooth and open
cinity ~in the sense of the surface! of the boundary~see Figs.
1 and 3!. Then, it also follows that the curveC can be in-
cluded in open setOC having no intersection with the non-
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nested surfaces inS. This is so because the region excluding
the interior of the closed surfaces inS is also connected if the
Si are disjoint. But, from Theorem 1 it follows thatf and the
electric field must vanish in allOC . This should be the out-
come because the successive application of Theorem 1 to
boundaries intersected by the curveC permits to recursively
imply the vanishing off and the electric field in each of the
intersections ofOC with the subregionsRi through whichC
passes. The first step in the recursion can be selected as
intersection ofC with Bj 0 at a point that by assumption is
contained in an open neighborhood of the boundaryBj 0. As
the electric field andf vanish at free space, the fields in the
first of the considered intersection ofOc should vanish. This
fact permits to define another open and smooth neighbo
hood of the next boundary intersected byC in which the field
vanish and so on up to the arrival to the intersection with th
boundary of the regionRi containing the ending ofC at the
original pointP. Therefore, the electric field and the potentia
should vanish at an arbitrary pointP of R with only two
restrictions:~1! P to be contained in an open neighborhoo
of someRi and~2! P to reside outside any of the surfaces in
S. Thus, it is concluded that the difference solutionf and its
corresponding electric field, in all the space outside the r
gion containing the sources vanish. Henceforth, it implie
that the difference between the two source distributions al
should be zero over any of the open surface in the setS. It
should be stressed that this conclusion is valid not only f
bounded surface charge densities, but also for surface dou
layer ~dipolar! densities. This is necessary because the flu
going out from any small piece of the considered surface
zero and moreover, the potential should be strictly consta
outside all the closed surfaces, which means that the a
sumed charge and double layer densities of sources exa
vanish. This completes the proof of the conclusion of Re
@1# in connection with sources supported by open surfaces
only remains to be shown that the sources are also null ov
the closedSi , whenever, these sources are restricted to
bounded surface densities of charges.

FIG. 3. Scheme of the curveC and the open regionOC

containing it.
1-6
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Before continuing with the proof, it is illustrative to ex-
emplify from a physical point of view how the presence o
nested surfaces among theSi destroys the uniqueness. Fo
this aim let us consider that a closed surfaceSi has another
open or closed surfaceSj properly contained inside it. This
means that an open set containingSj is also contained inside
Si . Imagine also thatSi is interpreted as a metal shell con
nected to the ground; that is, to a zero potential and that
surfaceSj is the support of an arbitrary density of source
As it is known from electrostatics theory, the charge dens
of a metal connected to the ground is always capable
creating a surface density of charge atSi such that it exactly
cancels the electric field and the potential at the outside
Si , in spite of the high degree of arbitrariness of the char
densities at the interior. That is, for nested surfaces inS, it is
not possible to conclude the uniqueness, because at the i
rior of a nesting surface, and distributed over the nested on
arbitrary source distributions can exist that determine exac
the same evoked potential at the outside boundaryB0.

Let us finally show that if no nesting exists the uniquene
also follows when the sources over the closed surfaces
limited to bounded surface densities of charges. Consid
any of the closed surfaces, say,Si . As argued beforef and
the electric field vanish at any exterior point ofSi pertaining
to certain open set containingSi . Then, the field created by
the difference between the sources associated with the
different solutions assumed to exist should be different fro
zero only at the interior region. That zone, in the most ge
eral situation can be filled by a finite number of bodies wit
different but constant conductivities. The necessary vanis
ing of the interior field follows from the exact conservatio
of the lines of forces for the ohmic electric current as e
pressed in integral form by

E dsW•s~xW !EW ~xW !50. ~16!

Let us consider a surfaceT defined by all the lines of
forces of the current vector passing through an arbitrar
small circumferencec that sits on a plane being orthogona
to a particular line of force passing through its center. Let t
center be a point at the surfaceSi . Because, the above-
defined construction, all the flux of the current passin
through the piece of surface ofSi ~which we will refer to as
p) intersected byT is exactly equal to the flux through any
intersection ofT with another surface determining in con
junction with p a closed region. By selecting a sufficiently
small radius for the circumferencec it can be noticed that the
sign of the electric field component along the unit tange
vector to the central line of forces should be fixed. This is
because otherwise there will be an accumulation of charge
some closed surface. Now, let us consider the fact that
electric field is irrotational and examine a line of force of th
current density that must start at the surfaceSi . It should end
also atSi , because on another hand the current density w
not be divergenceless. After using the irrotational conditio
for the electric field in the form
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R
C
EW •d lW5E

C1

EW •d lW1E
C2

EW •d lW5E
C1

EW •d lW50 ~17!

in which C1 is the line of force starting and ending atSi and
C2 is a curve joining the above-mentioned points atSi but
with all its points lying outsideSi wheref5f1-f2 and the
electric field vanishes. Let us notice that the electric field and
the current have always the same direction and sense as vec
tors, because the electric conductivity is a positive scalar. In
addition, as it is argued above, the current cannot reverse the
sign of its component along the tangent vector of line of
forces. Therefore, it follows that also the electric field cannot
revert the sign of its component along a line of force. Thus,
the integrand of the line integral over theC1 curve should
have a definite sign at all the points, hence implying thatf
and the electric field should vanish exactly in allC1. Resum-
ing, it follows that the electric field vanish also at the interior
of any of the closed surfacesSi . Furthermore, as the sources
within the closed surfaces are assumed to be bounded surfac
densities of charges, the vanishing of the electric field both at
outside and inside regions implies that these densities are
vanishing. Note that for double layer densities this is not
true. As the above-mentioned sources are associated withf
5f1-f2, it follows that the evoked potential atB0 uniquely
fixes the assumed kind of sources generating it when they
have their support in a set of non-nesting surfacesS.

IV. A 2D EXAMPLE

As it was announced in the Introduction, in order to illus-
trate the realization of the above discussion in a physical
situation, in this section, a 2D electrostatic problem associ-
ated with a charge density distributed over a line~a point in
the complex plane! parallel to a slotted and grounded planar
conductor will be analyzed. For this purpose consider a lo-
calized density of filamentary charges given by

r1~z!5r1~x1!d~x22h!, ~18!

wherez5x11 i x2 andh.0 is the height of the line support-
ing the charges over a slotted conductor plane sited atx2
50. The slot is assumed to have width 2a and to be sym-
metrically centered at the originx150.

We will argue that ifr1(x1) is bounded and absolutely
integrable, then the measuring of the potentialf1(z) gener-
ated by the charge density~18! in a wholex25h1,0 line
situated below the conductor and parallel to it, uniquely de-
termines the charge densityr1, whatever, but nonvanishing,
the value of the slot widtha is.

The defined electrostatic problem has an analytic solution
that can be written by using the Schwartz-Christoffel trans-
formation ~see Ref.@10#! to be

f1~z!5
1

2pE2`

`

dx18G~x1,x2 ;x18 ,h!r1~x18!, ~19!

where the Green function of the problemG has the explicit
expression
01-7
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G~x1 ,x2 ;x18 ,x28!5
1

2p
lnS x12x181A~x11 i x2!22a22A@~x181 i x28!22a2] * 1 i ~x21x28!

x12x181A~x11 i x2!22a22A~x181 i x28!22a21 i ~x22x28!
D , ~20!
it

-

h

il

l

y

in which the square root is defined as

Az[uzuexpS arg~z!

2 D ,

0<arg~z!,2p,

and 2a is the width of the slot.
The equipotential lines associated to a line of charges s

ated at the pointz50.51 i are illustrated in Fig. 4 for the
casea50.5.

Let us show in what follows two properties that will im
ply the uniqueness of the density of the form~18! under a
definite outcome for the measurement of the potential at a
line x25h1,0.

A. Property 1

If a density of filamentary chargesg(x18) lying in a lineL
is bounded and absolutely integrable, then the potential t
it defines in free space in another lineL8 parallel toL cannot
exactly vanish alongL8.

In order to show this statement, let us considerL to be the
x1 axis. Then the potential at any point of the 2D plane w
be

fg~z!5
1

2pE2`

`

dx18g~x18!ln@x2
21~x12x18!2#1/2, ~21!

and let us consider thatfg(z) is vanishing at some paralle
plane x25b. Then, after taking a first derivative offg(z)
over x1 it follows that

05
1

2pE2`

`

dx18g~x18!
~x12x18!

b21~x12x18!2
, ~22!

for all x1. Therefore, after further Fourier transforming Eq
~13! over x1 and employing

E
2`

`

dx exp~ ixq!
x

b21x2
5 ip exp~2uqub!~q!, ~23!

produces

05 ip exp~2uqub!sgn~q!g~q!, ~24!

where g(q) is the Fourier transform of the spatial densit
g(x1). Therefore, it follows thatg(q) is null for almost all
the q values and hence the spatial densityg(x1) also van-
ishes. This completes the proof of Property 1.

The second property to be used is discussed below.
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B. Property 2

If a density of filamentary chargesg(x1) defined on a line
L, is bounded and absolutely integrable, then the normal
component of the electric field that it defines in another line
L8 parallel toL cannot exactly vanish within an open interval
of L8.

To start the proof, let us consider the potential expression
in Eq. ~21! as evaluated in a neighborhood of the same line
L8 defined byx25b. Taking a derivative overx2 and evalu-
ating atL8 defines the normal component of the electric field
on the lineL8. This quantity takes the form

En~x1 ,b!5
1

2pE2`

`

dx18g~x18!
b

b21~x12x18!2
. ~25!

Let us study the implications of assuming the vanishing of
En in a whole open neighborhoodN defined by2a1,x1
,a1. In the present case, as the Eq.~25! is not vanishing for
all the lineL8, the recourse of Fourier transforming the ex-
pression~25! is not appropriate. However, it is possible to
perform an arbitrary number of derivatives of Eq.~25! over
the x1 variable to have inN,

05
1

2pE2`

`

dx18
dn

dx18
n
g~x18!

b

b21~x12x18!2
. ~26!

After substitutingg(x18) in terms of its Fourier transform
through

g~x!5E
2`

` dq

2p
exp~2 ixq!g~q!, ~27!

and using

E
2`

`

dx exp~ ixq!
1

b21x2
5

p

b
exp~2uqub!,

it follows for all the integersn

05E
2`

`

dq qn exp~2uqub!g~q!exp~2 ix1q!, x1PN.

~28!

Further, after multiplying by the function

f ~x1!5u~x11a1!2u~x12a1!,

whereu is the Heaviside step function and by also taking
into account

E
2`

`

dx f~x!exp~ ixq!52
sin~a1q!

q
,

01-8
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FIG. 4. The constant potential lines of a line
of charge at positionz511 i in the complex
plane, situated over a conductor plane with a slot
of width 2a51.
.

-

the following relation arises:

05E
2`

`

dq qn exp~2uqub!
sin~a1q!

q
g~q!

5E
2`

`

dq qng~q!, for all n.0. ~29!

In addition, the arbitrariness ofn leads to

E
2`

`

dq expS 2
q2

2 DHm~q!g~q!50, for all m>0.

~30!

Expression~30! means that all the coefficients of the ex-
pansion of the functionsg in series of the Hermite functions
vanish. Thus, it follows that

exp~2uqub!
sin~a1q!

q
g~q!50. ~31!

But this relation, in turns, implies thatg(q)50 except
perhaps at the zero measure setZ formed by the pointsqm
5mp/a1 , 2`,m,`, mÞ0, where sin(a1q)/q50. After
taking into account that the charge density is bounded an
absolutely integrable, it follows thatg(q) should be also
bounded. This property, in turns implies that even wheng
would not vanish at the points ofZ, the Fourier inverse trans-
form of g(q), that is the spatial density will vanish in the
whole lineL. This finishes the proof of the second property
04190
d

In what follows the above conclusions will be employed
to show the uniqueness of the charge density~18! that deter-
mines specific potential values measured at all the points on
another plane lying below the slotted conductor. This conclu-
sion will be valid independently of the size of the slota
whenever it is finite. However, strictly ata50 the argument
becomes invalid and the lack of uniqueness is clear: indepen
dently of the value of the charge density~18!, the perfect
grounded conductor plane without any slot fully screen out
the field from the zone below the real axis.

In order to discuss the uniqueness, two different charge
densitiesr1 andr2 will be assumed to create the same mea-
sured potential within a planex25h1,0. Thus, the charge
density

r~x1!5r1~x1!2r2~x1! ~32!

~defined along the linex25h) will produce a vanishing po-
tential at the points of the linex25h1. Let us callf(x1 ,x2)
the potential created by the densityr and assume that the
size of the slota is arbitrary but different form zero. Define
also the potentialf0(x1 ,x2) as the one corresponding to the
same charge densityr but when the conductor plane has no
slot. After that, the solutionf related to the slotted plane can
be equivalently expressed as

f~x1 ,x2!5f~x1 ,x2!2f0~x1 ,x2!1f0~x1 ,x2!

5F~x1 ,x2!1f0~x1 ,x2!. ~33!
1-9
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It is clear thatf0(x1 ,x2)50 for any point below the rea
axis wherex2,0. As it was already noticed above, this is
because the perfect ground plane fully screen the pote
created by the charger. As for the potentialF, it is created
by charges that are localized precisely at the coordinate
x250. The charge density associated with this potential
ing equal to the difference of the densities generating
potentialsf andf0, has as its support the real axisx250.
This occurs because the charge densityr lying over the
planex25h is common to both solutionsf andf0 and then
cancel in calculating the difference of the charges that g
erates the potentialF.

It also follows that the whole field in the region below th
conductor plane should coincide withF since thef0 is ex-
actly vanishing there. Henceforth, as the sources of the fi
F are completely planar ones, they should vanish exa
due to Property 1 because by assumption the field differe
f of the two supposedly existing different charge densit
r1 andr2, is vanishing in the measuring planex25h1,0.

Thus the first curious conclusion arises: the charge den
concentrated in the slotted plane should exactly coinc
with the perfect screening charge density of the conduc
plane related with the potentialf0. Moreover, as the charg
density lying in the slotted plane is vanishing at the poi
within the slot, it follows that the charge density of th
screening solutionf0 at such points should also vanish. Fu
thermore, as the total field at the points being below the
axis is vanishing in such conditions, it also follows that
continuity the total electric field at the points of the slot
the x250 line should also vanish identically.

It is useful to notice now that the normal component
the electric field at the point of the interior of the slot ca
only be generated by the charges above the real axis. In o
words, the normal component should be produced by
charges lying at the planex25h which are associated with
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the difference between the two charge densities producin
the same measured potential. This property follows becau
the charges contained in the real axis, as they were dete
mined to vanish at the slot points, can only produce a tan
gential net field at the slot points lying along the real axis.

Thus it can be concluded that the planar charges, asso
ated with the densityr(x1)5r1(x1)2r2(x1) defined on the
line x25h, create a vanishing normal component of the elec
tric field at some open interval, say,

2a,2a1,x1,a1,a

fully contained within the slot. However, Property 2 ex-
cludes this possibility, then implying thatr(x1)5r1(x1)
2r2(x1)50. Therefore, the uniqueness of the sources defin
ing a measured potential values in a whole line lying below
the real axis, follows however small would be the size of th
slot a. This conclusion then illustrates the drastic change i
uniqueness of the considered electrostatic problem produc
by destroying, through an arbitrarily weak perturbation, the
nested character of the charge distribution generating th
fields.
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