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On the uniqueness of the surface sources of evoked potentials
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The uniqueness of a surface density of sources localized inside a spatial Regith producing a given
electric potential distribution in its boundaBy, is revisited. The situation in whicR is filled with various
subregions, each one having a definite constant value for the electric conductivity is considered. It is argued
that the knowledge of the potential in &}, fully determines the surface-located sources for a general class of
surfaces supporting them and also a wide type of those sources. The class of surfaces can be defined as a union
of an arbitrary but finite number of open or closed surfaces. The only restriction upon them is that no one of
the closed surfaces contains inside it anotfmersting of the closed or open ones. The types of sources are
surface charge densities and double lag#polan densities for the open surfaces and more restrictively, only
surface charge densities for the closed ones. A two-dimensional analytically solvable example illustrating the
drastic appearance of uniqueness after arbitrarily small holes are opened in nested surfaces is discussed.
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[. INTRODUCTION be localized near the top of the head, for example, the spe-
cific conclusions of this paper could be expected to apply

The uniqueness problem for the sources of the evoke@pproximately. For example, situations for which it could be
potential in the brain is a relevant research question due to igxpected to occur are such ones in which the sources of the
role in the development of cerebral electric tomographyEEG are identified to be localized in some open region of the
[1-4]. For a long time, it has been known that the generafFortex surface. The conditions for the practical applications
inverse problem in the determination of volumetric source$f the discussion will be deferred for future analysis, since
from the measurement of the potential at a surface is nohey need a different sort of mathematical treatment.
solvable in generdb,6]. However, under additional assump- ~ We consider that the results enunciated in Réj. are
tions about the nature of the sources, solutions can be otyalid and useful ones. Even more, we think that a relevant
tained[7—9]. The supplementary assumptions can be classimerit of that paper is to call attention to the possibility of the
fied into two groups: the physically grounded ones, whichuniqueness of classes of surface density of sources. Specifi-
are fixed by the nature of the physical problem and the onegally, in our view, the conclusion stated there about the
that are imposed by invoking their mathematical property ofuniqueness of the sources of evoked potentials as restricted
determining a solution, but having a weak physical foundat0 sources distributed in open surfaces is effectively valid. In
tion. The resumed situation implies that the determination othe present work, the central aim is to extend the result for a
physical conditions implying the uniqueness of the sourcedvider set of surfaces including closed ones by also furnish-
for the evoked potentials remains an important subject ofng an alternative way to derive the uniqueness result. The
study. Results in this direction could avoid the imposition ofuniqueness problem for the special class of volumetric
artificial conditions altering the real information on the sources discussed in Ré¢fl] is not considered here in any
sources to be measured. way.

The question to be considered in this work is the unique- The physical system under consideration for the proof of
ness of the sources for evoked potentials under the suppoghe uniqueness is formed by various volumetric regions, each
tion that these sources are localized over surfaces. This iss@ them having a constant value of the conductivity, sepa-
was also treated in Ref1] by including some specially de- rated by surface boundaries at which the continuity equations
fined volumetric sources. The concrete aim here is to preseffr the electric current is obeyed. The particular subset of the
a derivation of the results enunciated in Réf| for the case 0pen surfaces, in a more general way, is also allowed to
of open surfaces and to generalize it for a wider set of surSupport continuous double layetipolar) surface source dis-
faces including closed ones. tributions, which are frequently used for physical applica-

It should be specified that as in Réfl], here we will tions in evoked potentials research.
assume that the evoked potential is measured over a closed The precise definition of the generators under examina-
surface. Clearly, this condition is not satisfied in the practicafion is the following. The sources are assumed to be defined
situations where the field in area of the neck cannot be deby continuous and smooth surface charge densities lying

termined. However, accepting that the sources are known t@ver an arbitrary but finite number of smooth open or closed
surfaces. The opened surfaces, as mentioned above, can also

support double layer surface densities. The unique constraint

*On leave from Group of Theoretical Physics, Instituto de Ciber-to be imposed on these surfaces is that there is no nesting

nética, Mateméica y Fsica, Calle E, No. 309 Vedado, La Habana, among them. That is, there is no closed surface at which
Cuba. Email address: cabo@cidet.icmf.inf.cu interior another open or closed of
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the surfaces resides. This class of supports expands the one S
considered in Refl1]. It should be stressed that the bound-
aries between the interior regions are not restricted by the
“non-nesting” condition. That is, the fact that the skull and
the few boundaries between cerebral tissues can be visual-
ized as nearly closed surface does not pose any limitation on

the conclusion. The “non-nesting” condition should be valid P
only for the surfaces in which the sources can be expected to R
reside. For example, if by any means we are sure that the S;

sources stay at the cortex surface, then the uniqueness result

apply whenever the portion of the cortex implied does not Free
contain any closed surface. By 0 Space

It should be recognized that the claimed result looks FIG. 1. An illustrafi ¢ a simol ted regich i
somewhat suspicious after considering that nestedlike sur- >- 1. AN Tustration of a simply connected regiéhconst-
. . uted in this case by only two simply connected subregRRpsnd

faces can be drastically transformed in non-nested ones

o . o . having a boundanB,,. The boundary with free space is de-
2 12
arbitrarily small holes opened in them. This implies that, SOhoted byB,. The set of non-nesting surfac8have four elements

strangely as it appears, the inverse problems for the consi& =1 .. 4 two ofthem open and other two closed ones. A
ered Charge distributions should be turned off diSCOﬂtinUpiecewise straight curv€ joining any interior pointP of R and a
ously from having nonunique to unique solutions. Howeverpoint O in the free space is also shown.

in support of the possible occurrence of this effect is that the

discussion is related to a continuous system in which the 1. GREEN THEOREM AND FIELD VANISHING
potential in the outside boundary is assumed to be exactly CONDITIONS

known over a continuous surface. Then, it comes to mind Let us consider the potentiab generated by a source

that the opening of the hole would lead to a small but non<isyiption concentrated in the “non-nested” set of open or

vanishing space-dependent potential at the outside of thggseq surfaces defined in Sec. I, which at the same time are
now “almost nesting” surface. Since we are assuming th&ontained within a compact and simply connected spatial
capability of performing an exact measure of the potentlalregion R The setR, as explained before, is formed by vari-
no matter the weakness of the field, it becomes more naturg)ys connected subregioi®, i=0,1, ... n each of them
to accept the possibility for the potential to determine thefilled with a substance having a constant conductivity
sources uniquely. We interpret this state of affairs in the fol-also, let B, be the possibly but unnecessarily existing
lowing sense: for the cases in which the holes are reallpoundary between the subregidRsand R;, andB, be the
small, to determine the sources in a practical discretization dboundary ofR. For the sake of a physical picture, we can
the considered problem will be very much difficult than for interpretB, as the surface of the skuR as the interior of the
the cases in which the holes are bigger. In the former case theead and the subregioRs as the ones containing the various
sensitivity of the measuring device needed for determiningissues within the brain. It is defined that the exterior space
uniquely the sources should be much greater in dependeneg the head corresponds t&,. In addition, let S, i
of the smallness of the holes. That is, in spite of the correct=1, . .. m be the surfaces pertaining to the arbitrary but
ness of the claimed result, the difficulty to experimentallyfinite setS of non-nested open or closed surfaces in which
check the uniqueness in practical experiences will depend oihe sources are assumed to be localized. The above-
the concrete situations. mentioned definitions are illustrated in Fig. 1.

In order to show the realization of the above general ar- Then, the Poisson equation satisfied by the potegtia

gument within a specific example we discuss the two+he interior points oR (but which are outside the boundaries
dimensional2D) electrostatic solution associated with a line petween the internal regiori®) can be written as

of charges that is parallel to a slotted and also planar

grounded conductor. However small but nonvanishing the V- [o(X)V(X)]=g(X), (1)
slot is, it is shown that the measuring of the potential within
a whole plane separated from the charges by the slotted con-
ductor, uniquely determines the planar sources. Taking into
account that for a rigorously null size of the slot, the inverse
problem has no solution, the discontinuous change in th
uniqueness character of the problem induced by small drille
holes becomes illustrated.

The paper is organized as follows. An auxiliary property - -
is derived in the form of a theorem in Sec. Il. In Sec. Il the o(x)=0g; for xeR;. ©)
proof of uniqueness for the kind of sources defined above is .
presented. Finally, a two-dimensional illustration corre-NOt, that for the points in which the above Poisson equa-
sponding to a slotted plane and a line of charges parallel to itjon is defined, the conductivitg-(x) is effectively a con-
is discussed in Sec. IV. stant and can be extracted from the divergence operator.

g(x)=—-V-J(x), )

hereJ are the impressed current®r example, generated
y the neuron firings within the braginand the space
dependent conductivity is defined by
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It should be noticed that the conductivities are differentsupporting the sources. Exactly at the surface the gradient or

from zero only for the internal regions & The vacuum the field itself could be undefined.

outside is assumed to have zero conductivity and the field After performing the limit process and due to the assump-

satisfying the Laplace equation. In addition, outside the suption of the vanishing of the gradient ov8f the first integral

port of the sources whemg=0 the Laplace equation is also appearing in Eq(5) will reduce its domain to the spherical

satisfied except at the separations between the red@pons part Bg, spne Of the boundary ofQ . Moreover, since the

where the usual boundary conditiofsithin the static ap- integral of the gradient over any curve insiQ€ that tends

proximatior) associated with the continuity of the electric to be parallel but nontouching*, should approach zero be-

current flowing through these boundaries, takes the form cause of the vanishing condition for the gradient, the limiting
value of the potential for any point tending & from the
inside of Q*, becomes a certain constant valyg. This

, (4) property allows us to write for Eq5) in the limit e—0, the
X< B expression

¢

G-iﬁ_ni

o —|
J .
XeBij 5”1

wheredn; symbolizes the directional derivative along a line

normal toB;; but taken in the limit o&x— B;; from the side e(X)= o+ lim j d_s %V*X,(p()?)
of the regionR;. The direction defining the derivative is e~>0 BQi47T [x—x'|
taken as the one going froMlR; to R;, which justifies the
minus sign in Eq(4). - -,
A main property is employed in this work for obtaining _VX’(W) [e(X") = ¢o]
the claimed result. In the form of a theorem for a more pre-
cise statement, it is expressed as follows. ds’ 1 . R
Theorem 1 Let us consider a differentiable surfa&s =@ f -—- »—é,VX/go(x’)
that divides an open baR* into two connected and open Bo+sphedT | [Xx—xX']

subregionR* andR* and assume that the field satisfies 1
the Laplace equation within, sayR’ . Consider also a _§X,(ﬁ) [o(X) = o)
smaller ballQ with its center lying onS*, and its spherical Ix—x'|
boundary having a minimal nonvanishing distance to the
boundary ofR*. DefineQ, as equal to the intersection @f  Where the following identity has been employed:
with R% . Then, if the gradient of tends to vanish on ap-
proaching any point of the intersection 8f with Q while ds 1
coming from the interior of) , , it follows that¢ is constant QDOZ_J _'ﬁx’(7> ®0, )ZEQi_
over any open set contained withRi; . Bo¢ 4w Ix=x']|
As a first stage in the derivation of this property, let us
consider the Green Theorem as applied to an interior region The last integral in Eq(6) has a domain that contains
Q¢ of the open sefQ, defined in the Theorem 1, inside points having a finite distance from the centerQfThere-
which the fielde satisfies the Laplace equation. Then, thefore, it implies that the potentiap is an analytical function

theorem expresses evaluated at a particular interior pomt ~ of all the components of a pointlying inside Q. with the
in terms of itself and its derivatives at the bound&y- as only condition for it to have a finite minimal distance from
’ the points iNBg sphe- AN important property of the expres-
sion (6) for ¢ is that it should be also valid for the points
B, f ds'
¢(X) v

: (6)

1 . . arbitrarily near but not pertainin§*, independently of the
»—e,foqJ(X') possible boundary character of this surface or not. It should
[x=x'] be noticed that although E€B) is not valid for the descrip-

tion of the real problem at the points 8f, it is yet a well-
, (5)  defined analytical function of the coordinates at all the points
of S* having a finite distance frorBq , sphe-

Further, let us consider an arbitrary poiRte S* being
where the integral is running over the boundary surfacenside the regionQ, but having a finite distance from the
Bge: that is spanned by the coordinates This relation  spherical part of the boundary €f, , that isBq. sphe- The
expresses the potential as a sum of surface integrals of tfe@ndition for S* to be differentiable in a sufficiently small
continuous and bounded values @f and its derivatives. neighborhood\p,CS* can be now expressed by specifying
Now, it is possible to set the boundary@f, to approach the the coordinates of this surface as follows:
corresponding boundary @, in the limit e—0 in such a
way that no point of5* is touched in the limiting process. It
can be remarked that this consideration for the limiting pro-
cess is necessary for the cases in wis¢hcoincides with a
boundary between different conductivity regions or a surface X2(S1,S2,0)=S5;, 7

- 1 -,
—er T cp(X )
[x=x'|

—X

X1(81,52,0)=s,,
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X3(S1,52,00=9(s;,S5), be differentiable. Therefore, it follows that the components

of the inverse matrixs,(x)/dx; and its derivatives, which

where, clearly the parameters defining the surface are the tware needed below, also will be analytic functionssgfAlso,

specific coordinates; andx,; andg(s;,s,) is a differen- it will be useful to notice here that E¢6) implies that the

tiable function of both variables. The coordinates are meafield ¢ is also an analytic function of; for fixed s; ,s,.

sured from an origin situated at the potNow, and within Now, the Laplace equation fap in terms of thes coor-

a sufficiently small but finite neighborhood &% it is pos-  dinates can be written as

sible to define a curvilinear coordinate system in the follow-

INng way: 072 ( ) 1 i (9233 J ( )

———(S)+ —o(s
X1(S1,S2,S3)=S;+S3N41(S1,Sy), ‘753‘933(P h(s) =1 9xidx; &S3<P

(51,52.59)=5, S5 15(51.57) ® S R S
X2(S1,S2,S3)=S,1TS3N5(S51,Sy), —@(S

2(81,S2,83) =S+ S3N2(S1,S h(s) &4 &1 ax,0%, 03(,@
X3(S1,S2,53)=0(S1,S2) +S3 N3(S1,S2), 1 3 & 2 39S, 0Sy 92
> > — ¢(s)=0,
h(s) =1 o=1 721 9% X gs_ds,.

wheren=(n;(s;,S,),N>(S1,S,),N3(S1,S,)) is a normal unit
vector toS* at the surface point(s;,s,,0) of S* ands; is (10
the distance from the general coordinate p&(rﬂl,sz,s3) to
a corresponding surface poiil(csl,sz,O). Therefore, by con- 3

structioni(sl,sz,sg) is assumed to be along a line normal to h(s)= Z Y v - (11)
S* at the pointx(s; ,S,,0).

Taking the derivatives of the coordinaté® follows that The absence of the terms containing mixed derivatives

overs; ands; , is a consequence of E¢Q). From the ana-
xi(s) ax;(s) IXi Iyticity with respect tos; of the Jacobiarvs;/dxj and its
Fram 2 ni(s1,82)| 7 (5115210) derivatives over the variables it follows that all the coeffi-
3 1 i=1 : : ) . )
cients in the Laplace equati@hO) are also analytic functions

3

2

of the s3 variable. Furthermore, since the vects;/dx; is
+53&—51ni(51,32)) one of the rows of the Jacobian, its square modui(s)
cannot vanish at the poilt, thus allowing the division by it
=0, in some sufficiently small but finite neighborhood.

Next, the above-mentioned analyticity @f with respect

3 to the variables; permits to write the expansion

IXi(s) dx;(s) X
dsy s, ,Z 51-52)( (51,52,0)

2

o0

J @(s)=2, fu(s;,5,)83, (12)
+Ss(9_52ni(sl'52) n=0

=0, (9) where the coefficient§, are functions of,,s,. Thus, let us

substitute Eq(12) in Eq. (10) and take into account that all
the coefficient functions in Eq10) are analytically depend-
ing on sz, a property that allows to multiply their series

These relations follow because the derivative of a unit”: expansions. After that, the necessary vanishing of the coeffi-
vector is always normal to it and also because the vector%nen
ax(sl,sz)/asl , are tangent to the surface and therefore or .
thogonal ton(sl S,). In addition, the identity

$=(81,52,83), X=(X1,X2,X3).

e following kind of recurrence relations for the functions

1
3
> I%i(s) I8 (x) fn+2(31,82)=m
k=1 JSk JX g
n
expresses that the matrixs,(x)/dx; is the inverse of ><mE:O (m+1)cp_m(S1,S2) fme1(S1,S2)

dxi(s)/ds,. Now, it could be noticed that from Ed8) it

follows that 0x;(s)/dsy is an analytic function ofs;. The 2 p

same property is not happening with respect to the other i S s S s
variabless; ,s,, because the surfa@" is only supposed to Z’ n-m(St. 2) m( 1:52)
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2 2
, Jd
+2 2 Cgfm(slaSZ) fm(slvsz)
o=1 0.’:1 o o'

n=0,1,.. .%o, (13

Relations(13) imply that the coefficientd, are deter-
mined by their values for lesser values of the indeket us
study below what are the conditions imposed on théy
the vanishing of the gradient at the points $f. First, the
gradient can be expressed as

o 2 asj do 2 Is; g It (51,S2) FIG. 2. Picture of the regioR; and the open neighborhoddin
IXi {Shox s, =1 9% iso Js; Whiqh.the fieldQ vanishes exactly. A pieceyvise ;traight line curve
C joining a pointP e N and certain poinP; in R; is also shown.
+(n+1)f,1(S1,S,) 5]3) S3. (14  minimal radius of convergence qf and its gradient consid-
ered as analytical functions of any of the coordingtesa-

sured from the considered pojns equal or greater tha.
Imagine now a curv€ starting in an interior poinP of N
and ending at any poi; of O. Assume tha€C is formed by
straight lines piecegsee Fig. 2 and that all its points are
fo($1,52) included inO. It is then possible to defing as a function of
a—slzo’ the length of arcs of C as measured from the poift It
should be also valid that in any open segmentGofnot
including the intersection points of the straight lines pieces,

Since these derivatives all vanish at all the pointSbtf
relation (14) in the limit s;—0 leads to

M:Q (15) the potentiale and all the components of its gradie‘f?itp,
IS, are analytic function of. Furthermore, let us consid€r as
partitioned in a finite number of segments of lengtk: 5.

f1(s1,5,)=0. Suppose also, that the intersection points of the straight lines

pieces are the borders of some of the segments. It can be

But, thanks to the recurrence character of @4) and the  noticed thatV ¢ vanishes in any segment 6fstarting within
conditions(15) for the first two coefficients,, it follows N, because it vanishes M exactly. Furthermore, let us con-
that all these quantities vanish foe=1. At the same time sider also a small open b#IC N centered irP and the set of
Eq. (15) implies all the curves obtained by parallel translations of the just

definedC in the vector joiningP with any of the points oB.
fo(S1,S,) = fp=const. The set of all the ending points of such curves will define a
similar to B open ball withP, at its center. It is clear that for
Therefore, it follows that the fielgp determined by Eqi6) is  a sufficiently smallB all such curves will be included i@,
constant within a finite neighborhood of the poiRt It  since all the points o€ pertain toO that is open. Therefore,
should be recalled that in accordance with the conditions oft follows that in analogy to what happened for the cue
Theorem 1, Eq(6) was only valid for the internal points of he components Oﬁ¢ vanish at all the segments of the

Q. (which are not included i§*). Therefore, the constancy translated curves starting iN. This fact implies thaﬁ¢

of ¢ has been shown here only for certain open neighbor- _ . . ) )
hood included inQ., having no common points Witls*. vanishes in a whole open ball around the ending point of the

Physically, this circumstance is expressing the possibilit)}cIrSt segment of the curve. Since the series expansions of

that the surfaces* could be a part of a boundary between & components of ¢ with respect to the arc lengitmea-

regions of different conductivity or a support of the sourcesSuréd from the intersection point being considgreds by

To finish the proof of the theorem, it rests to show that jfconstruction a radius of convergence greater than the length
gradient ofe vanish within a certain open neighborhodid ~ of any of the segments, the vanishifige in a whole open
included in an arbitrary connected open €epertaining to ball around one of the intersection points directly implies the
the regionR* defined in Theorem 1, in which the Laplace vanis_hing of t_hese quantities within an open ball around the
equation is obeyed, then the electric field vanish inll ~ Nextintersection point. The same argument can be repeatedly
Consider first thaQ is an open set such th&CQ and also  done in an iterative way to conclude tf#ag vanishes at the
suppose that the smallest distance from a poirDito the  arbitrary ending point?; of the curveC. Henceforth, the
boundaryBq of Q has the finite values. Then, the Green conclusion of Theorem 1 follows: The potentialis a con-
theorem(5) as applied to the regio® expresses that the stant at any interior point oR? .
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IIl. UNIQUENESS OF THE NON-NESTING SURFACE
SOURCES

Let us argue now the uniqueness of the sources which are
defined over a set of non-nested surfaSgsroducing spe-
cific values of the evoked potentidl at the boundanB, of
the regionR. For this purpose it will be assumed that two
different source distributions produce the same evoked po-
tential overB,. The electrostatic fields in all space associated
with those sources should be different as functions defined in
all space. They will be called,; and ¢,. As usual in the
treatment of uniqueness problems in the linear Laplace equa-
tion, consider the new solution defined by the differedce
= ¢,—¢,. Clearly ¢ corresponds to sources given by the
difference of the ones associated with and ¢,. It is also
evident that¢ has vanishing values &;. Then, since the
sources are localized at the interior ®fand ¢ satisfies the
Laplace equation with zero boundary conditiorBgtand at
the infinity, it follows that the field vanishes in &#,, that is,
in the free space outside the head. Therefore, it follows that
the potential and the electric field vanish in &}, when
approaching this boundary from the free spaé®)( The nested surfaces i This is so because the region excluding
continuity of the potential, the boundary conditio@ and  the interior of the closed surfaces%is also connected if the
the irrotational character of the electric field allows to con-S are disjoint. But, from Theorem 1 it follows thgt and the
clude that¢ and the electric field also vanish at any point of electric field must vanish in alD. . This should be the out-

B, but now when approaching it from any interior subregioncome because the successive application of Theorem 1 to the
R; having a boundanB;, with the free space. Moreover, if boundaries intersected by the cu@eermits to recursively

the boundary surface of any of these regions that are in conmply the vanishing ofp and the electric field in each of the
tact with the boundary oR is assumed to be smooth, then it intersections oD with the subregion&; through whichC
follows from Theorem 1 that the potentigl and the electric  passes. The first step in the recursion can be selected as the
field vanish in all the open subsets Bf, points that are intersection ofC with Bj, at a point that by assumption is
connected through its boundafy;, with free space by contained in an open neighborhood of the boundgy As
curves not touching the surfaces 8f It is clear that this  the electric field andp vanish at free space, the fields in the
result holds for all the open subsets of thé&ein which first of the considered intersection ©fc should vanish. This
Laplace equation is satisfied excluding those that are alsfact permits to define another open and smooth neighbor-

FIG. 3. Scheme of the curv€ and the open regiorO¢
ontaining it.

residing inside one of the closed surfa&sn the setS hood of the next boundary intersected®yn which the field
It is useful for the following reasoning to remark that if vanish and so on up to the arrival to the intersection with the
we have any boundarg;; between two region®; andR;, boundary of the regiolR; containing the ending of at the

and the potentialp and the electric field vanish in certain original pointP. Therefore, the electric field and the potential
open(in the sense of the surfacand smooth regions of it, should vanish at an arbitrary poift of R with only two
then Theorem 1 implies that the potential and the electri¢estrictions:(1) P to be contained in an open neighborhood
field also vanish in all the open subsetsRfandR; that are  of someR; and(2) P to reside outside any of the surfaces in
outside any of the closed surfaces3rSince the sources stay S Thus, it is concluded that the difference solutigrand its
at the surfaces iSthe field ¢ and its gradient at the internal corresponding electric field, in all the space outside the re-
boundary of the closed surfacgs, will not necessarily sat- gion containing the sources vanish. Henceforth, it implies
isfy the conditions of Theorem 1, even when the field and thehat the difference between the two source distributions also
gradient can be shown to vanish at the outside. should be zero over any of the open surface in theSséit

Let us consider in what follows a poirft included in a  should be stressed that this conclusion is valid not only for
definite open vicinity of a subregidR; . Suppose also th&  bounded surface charge densities, but also for surface double
is outside any of the closed surfacesSrimagine a curvéC  layer (dipolarn densities. This is necessary because the flux
that joinsP with the free space and does not touch any of thegoing out from any small piece of the considered surface is
surfaces inS It is clear that, if appropriately defined  zero and moreover, the potential should be strictly constant
should intersect a finite number of boundarigs including  outside all the closed surfaces, which means that the as-
always a certain onB;, with free space. Let us also assume sumed charge and double layer densities of sources exactly
that C is adjusted in a way that in each boundary it crossesyanish. This completes the proof of the conclusion of Ref.
the intersection point is contained in a smooth and open Vif1] in connection with sources supported by open surfaces. It
cinity (in the sense of the surfacef the boundarysee Figs. only remains to be shown that the sources are also null over
1 and 3. Then, it also follows that the curv@ can be in- the closedS;, whenever, these sources are restricted to be
cluded in open se®¢ having no intersection with the non- bounded surface densities of charges.
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Before continuing with the proof, it is illustrative to ex- R
emplify from a physical point of view how the presence of %
nested surfaces among tlSe destroys the uniqueness. For ¢
this aim let us consider that a closed surf&eas another i, which C, is the line of force starting and ending $tand
open or closed surfacg; properly contained inside it. This C, is a curve joining the above-mentioned pointsSabut
means that an open set cpntainﬁs]g's also contained inside \ith all its points lying outsideS, where ¢= ¢,-, and the
S;. Imagine also thas is interpreted as a metal shell con- gjectric field vanishes. Let us notice that the electric field and
nected to the ground; that is, to a zero potential and that thghe current have always the same direction and sense as vec-
surfaceS; is the support of an arbitrary density of sources.tors, because the electric conductivity is a positive scalar. In
As it is known from electrostatics theory, the charge densityyqgition, as it is argued above, the current cannot reverse the
of a metal connected to the ground is always capable ofign of its component along the tangent vector of line of
creating a surface density of chargeSasuch that it exactly  forces. Therefore, it follows that also the electric field cannot
cancels the electric field and the potential at the outside OIfevert the Sign of its component a|0ng a line of force. Thus,
Si, in spite of the high degree of arbitrariness of the charggne integrand of the line integral over ti® curve should
densities at the interior. That iS, for nested SurfaCES it”S have a definite Sign at all the pointsy hence |mp|y|ng tbat
not possible to conclude the uniqueness, because at the intgng the electric field should vanish exactly in@}. Resum-
rior of a nesting surface, and distributed over the nested onegg, it follows that the electric field vanish also at the interior
arbitrary source distributions can exist that determine exactlyy any of the closed surfac&. Furthermore, as the sources
the same evoked potential at the outside boundary within the closed surfaces are assumed to be bounded surface
Let us finally show that if no nesting exists the uniquenesgjensities of charges, the vanishing of the electric field both at
also follows when the sources over the closed surfaces agtside and inside regions implies that these densities are
limited to bounded surface densities of charges. Consideganishing. Note that for double layer densities this is not
any of the closed surfaces, s&. As argued beforep and  {rye. As the above-mentioned sources are associatedgwith
the electric field vanish at any exterior point§fpertaining — é1-b,, it follows that the evoked potential &, uniquely

to certain open set containiry. Then, the field created by fixes the assumed kind of sources generating it when they
the difference between the sources associated with the tWeaye their support in a set of non-nesting surfaes

different solutions assumed to exist should be different from

zero only at the interior region. That zone, in the most gen- IV. A 2D EXAMPLE
eral situation can be filled by a finite number of bodies with

different but constant conductivities. The necessary vanish-
ing of the interior field follows from the exact conservation
of the lines of forces for the ohmic electric current as ex-
pressed in integral form by

As it was announced in the Introduction, in order to illus-

trate the realization of the above discussion in a physical
situation, in this section, a 2D electrostatic problem associ-
ated with a charge density distributed over a l{agoint in

the complex planeparallel to a slotted and grounded planar

conductor will be analyzed. For this purpose consider a lo-
f ds o(X)E(x)=0. (16)  calized density of filamentary charges given by

p1(2)=p1(X1) 8(x2—h), (18

Let us consider a surfac€ defined by all the lines of wherez=x;+iXx, andh>0 is the height of the line support-
forces of the current vector passing through an arbitrarilying the charges over a slotted conductor plane sited,at
small circumference that sits on a plane being orthogonal =0. The slot is assumed to have widta 2nd to be sym-
to a particular line of force passing through its center. Let themetrically centered at the origixy=0.
center be a point at the surfa&. Because, the above- We will argue that ifp;(x4) is bounded and absolutely
defined construction, all the flux of the current passingintegrable, then the measuring of the potentta(z) gener-
through the piece of surface & (which we will refer to as  ated by the charge densiti8) in a wholex,=h;<0 line
p) intersected byl is exactly equal to the flux through any situated below the conductor and parallel to it, uniquely de-
intersection ofT with another surface determining in con- termines the charge density, whatever, but nonvanishing,
junction with p a closed region. By selecting a sufficiently the value of the slot widtfa is.
small radius for the circumferencat can be noticed that the The defined electrostatic problem has an analytic solution
sign of the electric field component along the unit tangenthat can be written by using the Schwartz-Christoffel trans-
vector to the central line of forces should be fixed. This is sdformation (see Ref[10]) to be
because otherwise there will be an accumulation of charge in
some closed surface. Now, let us consider the fact that the
electric field is irrotational and examine a line of force of the
current density that must start at the surf&celt should end
also atS,, because on another hand the current density willvhere the Green function of the probleégnhas the explicit
not be divergenceless. After using the irrotational conditionexpression
for the electric field in the form

1 0
$1(2)=5=| dxG(XaX2;x1,h)pa(x7), (19
27 )
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Xp— X) + (X i Xp)2— a2 = [(X, +ix5)2—a%* +i(Xp+ X))

X=X+ V(X i x)Z—a%— \(x]+ix5)2—a+i(Xp—X})

1
G(X1,X2;X1,X5) = E'n( (20

in which the square root is defined as B. Property 2
If a density of filamentary chargeg x;) defined on a line

\/Ez|z|ex;< argz) , L, is bounded and absolutely integrable, then the normal
2 component of the electric field that it defines in another line
L’ parallel toL cannot exactly vanish within an open interval
O=<argz)<2m, of L'.
To start the proof, let us consider the potential expression
and 2a is the width of the slot. in Eq. (21) as evaluated in a neighborhood of the same line

The equipotential lines associated to a line of charges situ-" defined byx,=b. Taking a derivative ovex, and evalu-
ated at the poinz=0.5+i are illustrated in Fig. 4 for the ating atL’ defines the normal component of the electric field
casea=0.5. on the lineL’. This quantity takes the form

Let us show in what follows two properties that will im-
ply the uniqueness of the density of the fofdB) under a 1 (=
definite outcome for the measurement of the potential at any En(X1,b)= ox ] dx; ¥(X1)- - (2Y
! )~ b=+ (X1-X7)
line x,=h;<0.

Let us study the implications of assuming the vanishing of

A. Property 1 E, in a whole open neighborhood defined by—a;<x;

<a;. In the present case, as the E2p) is not vanishing for
a}II the lineL’, the recourse of Fourier transforming the ex-
a . . . o .
pression(25) is not appropriate. However, it is possible to
perform an arbitrary number of derivatives of Eg5) over
the x, variable to have i\,

If a density of filamentary chargegx;) lying in a lineL
is bounded and absolutely integrable, then the potential th
it defines in free space in another libé parallel toL cannot
exactly vanish alond.’.

In order to show this statement, let us considéo be the

X1 axis. Then the potential at any point of the 2D plane will 1 (= dn b
be 0= —f dx} X1) . 26
2m ) X 7 Vb2 4 (x,_x])? 29
1 o0
! ! 2 ’
¢y(2)= Ef_mdxly(xl)ln[xz+(Xl—xl)z]llz’ (21) After substitutingy(x}) in terms of its Fourier transform
through

and let us consider that,(z) is vanishing at some parallel = dq
planex,=b. Then, after taking a first derivative af,(z) y(x):f —exp(—ixq)y(q), (27)
overx, it follows that 2T

and using

2m) .otV b2+ (x,_x})?’ °° _ 1 T
J_ dxexqu)m=5exp(—|q|b),
for all x,. Therefore, after further Fourier transforming Eq.

(13) overx,; and employing it follows for all the integers
o0 X *® -
fﬁ dxexp(ixq)m=iwexp(—|q|b)(q), (23 0= Lcdq o' exp(—|alb) y(q)exp(—ix1q), X;eN.
(28)
produces Further, after multiplying by the function
0=imexp(—[q|b)sgr(a) y(a), (24) f(x1)=6(xg+ay)—6(x;—ay),

where y(q) is the Fourier transform of the spatial density Where ¢ is the Heaviside step function and by also taking

¥(x;). Therefore, it follows thaty(q) is null for aimost all ~ INto account

the g values and hence the spatial densjffx,) also van- B _

ishes. This completes the proof of Ffrop.erty 1. J dx f(x)exp(ixq)zzs'n(alq)
The second property to be used is discussed below. —w q
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FIG. 4. The constant potential lines of a line
of charge at positiorz=1+i in the complex
plane, situated over a conductor plane with a slot

of width 2a=1.
e -1 T8 i 05 1 15
A
the following relation arises: In what follows the above conclusions will be employed

_ to show the uniqueness of the charge dendi) that deter-
0= * da o' “lqlb sin(a;q) mines specific potential values measured at all the points on
I g g’exp(—|qlb) q ¥(q) another plane lying below the slotted conductor. This conclu-

sion will be valid independently of the size of the skt

[~ N whenever it is finite. However, strictly at=0 the argument
N f_wdq d'g(q), forall n>0. (29 becomes invalid and the lack of uniqueness is clear: indepen-

dently of the value of the charge densit{8), the perfect
In addition, the arbitrariness of leads to grounded conductor plane without any slot fully screen out
the field from the zone below the real axis.
o q° In order to discuss the uniqueness, two different charge
f_wdq ex;{ - 7) Hm(a)g(q)=0, forall m=0. densitiesp; andp, will be assumed to create the same mea-
(30) sured potential within a plane,=h;<0. Thus, the charge
density

Expression(30) means that all the coefficients of the ex-

pansion of the functiong in series of the Hermite functions p(X1) = p1(Xy) = pa(Xy) (32)
vanish. Thus, it follows that
sin(a;q) (defined along the ling,=h) will produce a vanishing po-
exp(— |Q|b)—q ¥(q)=0. (3)  tential at the points of the ling,=h,. Let us call¢(x;,X»)

the potential created by the densjiyand assume that the
But this relation, in turns, implies thag(q)=0 except Size of the slo@ is arbitrary but different form zero. Define
perhaps at the zero measure Zdbrmed by the pointsy,,  also the potentiaipo(x,,x;) as the one corresponding to the
=mmla;, —»<m<w, m#0, where sing,q)/q=0. After ~same charge densigy but when the conductor plane has no
taking into account that the charge density is bounded anglot. After that, the solutiop related to the slotted plane can
absolutely integrable, it follows thag(q) should be also be equivalently expressed as
bounded. This property, in turns implies that even when

would not vanish at the points & the Fourier inverse trans- X1 Xo) = B(Xr Xo) — Bl(Xa Xo) -+ Dl Xe X
form of y(q), that is the spatial density will vanish in the PxaXe) = X0 X) = bolXa Xo) + dolXaX2)
whole lineL. This finishes the proof of the second property. =D (Xq,X5)+ dg(X1,X2). (33
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It is clear thatpo(X,X,) =0 for any point below the real the difference between the two charge densities producing
axis wherex,<0. As it was already noticed above, this is sothe same measured potential. This property follows because
because the perfect ground plane fully screen the potentidhhe charges contained in the real axis, as they were deter-
created by the charge As for the potentiafb, it is created mined to vanish at the slot points, can only produce a tan-
by charges that are localized precisely at the coordinate axigential net field at the slot points lying along the real axis.
X,=0. The charge density associated with this potential be- Thus it can be concluded that the planar charges, associ-
ing equal to the difference of the densities generating thated with the density(x;) = p1(X1) —po(X;) defined on the
potentials¢ and ¢, has as its support the real axis=0. line x,=h, create a vanishing normal component of the elec-
This occurs because the charge dengityying over the tric field at some open interval, say,
planex,=h is common to both solutiong and ¢, and then
cancel in calculating the difference of the charges that gen- —a<—a;<x;<a;<a
erates the potentiab.

It also follows that the whole field in the region below the fully contained within the slot. However, Property 2 ex-
conductor plane should coincide with since the¢, is ex-  cludes this possibility, then implying thai(x;)=p1(X;)
actly vanishing there. Henceforth, as the sources of the field- p,(x;)=0. Therefore, the uniqueness of the sources defin-
® are completely planar ones, they should vanish exactlyjng a measured potential values in a whole line lying below
due to Property 1 because by assumption the field differencehe real axis, follows however small would be the size of the
¢ of the two supposedly existing different charge densitiesslot a. This conclusion then illustrates the drastic change in
p1 andp,, is vanishing in the measuring plarge=h;<0. uniqueness of the considered electrostatic problem produced

Thus the first curious conclusion arises: the charge densitgy destroying, through an arbitrarily weak perturbation, the
concentrated in the slotted plane should exactly coincideested character of the charge distribution generating the
with the perfect screening charge density of the conductofields.
plane related with the potential,. Moreover, as the charge
density lying in the slotted plane is vanishing at the points
within the slot, it follows that the charge density of the ACKNOWLEDGMENTS
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